Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.738
Filtrar
1.
Science ; 384(6691): 66-73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574138

RESUMO

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Assuntos
Asma , Brônquios , Broncoconstrição , Animais , Humanos , Camundongos , Asma/patologia , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Inflamação/patologia , Transdução de Sinais , Canais Iônicos/antagonistas & inibidores , Lisofosfolipídeos/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores , Brônquios/patologia , Brônquios/fisiopatologia
2.
J Ethnopharmacol ; 290: 115093, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35149129

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acalypha indica Linn (Euphorbiaceae), a popular traditional medicine, is an erect herb found throughout various parts of India. In Ayurveda, Acalypha indica was commonly used in asthma and allergy. However, no attempts were made in past to validate the antiasthmatic potential of Acalypha indica. AIM OF THE STUDY: The present study was aimed to assess the anti-asthmatic potential of ethanolic extracts of Acalypha indica leaves (EAIL) using various experimental animal models. MATERIALS AND METHODS: EAIL was analyzed using different screening methods such as acetylcholine and histamine-induced contraction of goat tracheal chain, clonidine-induced catalepsy in mice, milk-induced leucocytosis and eosinophilia in mice, clonidine-induced mast cell degranulation in rats, passive paw anaphylaxis in rats, histamine-induced bronchoconstriction in guinea pigs, and ovalbumin (OVA)-induced histopathological alterations in mice. RESULTS: Data received in the present study showed that EAIL drastically antagonized acetylcholine and histamine-induced contraction of goat tracheal chain, suggesting its anticholinergic and antihistaminic activity respectively. The duration of immobility, produced by clonidine, was found to be decreased in mice which showed its H1 receptor blocking activity. In milk-induced leucocytosis and eosinophilia in mice, EAIL significantly reduced the number of leucocytes and eosinophils suggesting its adaptogenic and anti-allergic potential. Inhibition of clonidine-induced mast cell degranulation in rats displayed its mast cell stabilizing potential. Reduction of paw edema in passive paw anaphylaxis exhibited antianaphylactic activity of EAIL. Guinea pigs were protected from histamine-induced bronchoconstriction by EAIL which revealed its bronchodilator potential. Furthermore, the histopathological architecture of lung tissue was near to normal. CONCLUSION: Our results contribute towards validation of the traditional use of Acalypha indica in the treatment of asthma due to the presence of a wide range of phytoconstituents. Hence our investigation revealed that EAIL possessed strong antiasthmatic property by virtue of various mechanisms.


Assuntos
Acalypha , Asma/patologia , Broncoconstrição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antialérgicos/farmacologia , Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Broncodilatadores/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Caliciformes/efeitos dos fármacos , Cobaias , Hipersensibilidade/patologia , Mediadores da Inflamação/metabolismo , Mastócitos/efeitos dos fármacos , Camundongos , Folhas de Planta , Ratos , Ratos Wistar
3.
Respir Res ; 23(1): 26, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144620

RESUMO

RATIONALE: The long-acting ß2-agonist/long-acting muscarinic antagonist combination indacaterol/glycopyrronium (IND/GLY) elicits bronchodilation, improves symptoms, and reduces exacerbations in COPD. Magnetic resonance imaging (MRI) of the lung with hyperpolarized gas and gadolinium contrast enhancement enables assessment of whole lung functional responses to IND/GLY. OBJECTIVES: The primary objective was assessment of effect of IND/GLY on global ventilated lung volume (%VV) versus placebo in COPD. Lung function, regional ventilation and perfusion in response to IND/GLY were also measured. METHODS: This double-blind, randomized, placebo-controlled, crossover study assessed %VV and pulmonary perfusion in patients with moderate-to-severe COPD after 8 days of once-daily IND/GLY treatment (110/50 µg) followed by 8 days of placebo, or vice versa, using inhaled hyperpolarized 3He gas and gadolinium contrast-enhanced MRI, respectively. Lung function measures including spirometry were performed for each treatment after 8 days. MEASUREMENTS AND MAIN RESULTS: Of 31 patients randomized, 29 completed both treatment periods. IND/GLY increased global %VV versus placebo (61.73% vs. 56.73%, respectively, least squares means treatment difference: 5.00% [90% CI 1.40 to 8.60]; P = 0.025). IND/GLY improved whole lung index of ventilation volume to perfusion volume (V/Q) ratio versus placebo; 94% (90% CI 83 to 105) versus 86% (90% CI 75 to 97; P = 0.047), respectively. IND/GLY showed a trend to improve diffusing capacity for carbon monoxide (DLCO) (+ 0.66 mL/min/mmHg; P = 0.082). By Day 8, forced expiratory volume in 1 s (FEV1) was increased by 0.32 L versus placebo (90% CI 0.26 to 0.38; P < 0.0001), substantiating earlier findings and providing evidence of assay sensitivity for this trial. CONCLUSIONS: IND/GLY improved lung ventilation assessed by 3He MRI after 1 week of treatment. This observation may provide mechanistic support for the symptomatic clinical benefit shown with IND/GLY in COPD. Clinical trial registered with www.clinicaltrials.gov (NCT02634983).


Assuntos
Broncoconstrição/efeitos dos fármacos , Volume Expiratório Forçado/efeitos dos fármacos , Glicopirrolato/análogos & derivados , Indanos/administração & dosagem , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quinolonas/administração & dosagem , Capacidade Vital/efeitos dos fármacos , Idoso , Estudos Cross-Over , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Seguimentos , Glicopirrolato/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Estudos Retrospectivos , Resultado do Tratamento
4.
Toxicol Appl Pharmacol ; 432: 115754, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634286

RESUMO

Exposure to dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations. We have previously reported that inhalation of real-world mine tailing dusts during lung development can alter lung function and structure in adult male mice. These real-world dusts contain a mixture of metal(loid)s, including arsenic. To determine whether arsenic in inhaled dust plays a role in altering lung development, we exposed C57Bl/6 mice to a background dust (0 arsenic) or to the background dust containing either 3% or 10% by mass, calcium arsenate. Total level of exposure was kept at 100 µg/m3. Calcium arsenate was selected since arsenate is the predominant species found in mine tailings. We found that inhalation exposure during in utero and postnatal lung development led to significant increases in pulmonary baseline resistance, airway hyper-reactivity, and airway collagen and smooth muscle expression in male C57Bl/6 mice. Responses were dependent on the level of calcium arsenate in the simulated dust. These changes were not associated with increased expression of TGF-ß1, a marker of epithelial to mesenchymal transition. However, responses were correlated with decreases in the expression of club cell protein 16 (CC16). Dose-dependent decreases in CC16 expression and increases in collagen around airways was seen for animals exposed in utero only (GD), animals exposed postnatally only (PN) and animals continuously exposed throughout development (GDPN). These data suggest that arsenic inhalation during lung development can decrease CC16 expression leading to functional and structural alterations in the adult lung.


Assuntos
Arseniatos/toxicidade , Compostos de Cálcio/toxicidade , Pulmão/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Remodelação das Vias Aéreas/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Broncoconstrição/efeitos dos fármacos , Colágeno/metabolismo , Regulação para Baixo , Poeira , Feminino , Idade Gestacional , Exposição por Inalação , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Uteroglobina/metabolismo
5.
Eur J Pharmacol ; 912: 174591, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710369

RESUMO

Dry cough has been reported in patients receiving statin therapy. However, the underlying mechanism or other possible alterations in the airways induced by statins remain unknown. Thus, the aim of this study was to evaluate whether simvastatin promotes alterations in airways, such as bronchoconstriction and plasma extravasation, as well as the mechanism involved in these events. Using methods to detect alterations in airway resistance and plasma extravasation, we demonstrated that simvastatin [20 mg/kg, intravenous (i.v.)] caused plasma extravasation in the trachea (79.8 + 14.8 µg/g/tissue) and bronchi (73.3 + 8.8 µg/g/tissue) of rats, compared to the vehicle (34.2 + 3.6 µg/g/tissue and 29.3 + 5.3 µg/g/tissue, respectively). NG-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, intraperitoneal), a nitric oxide (NO) synthase inhibitor, Icatibant [HOE 140, 10 nmol/50 µl, intratracheal (i.t.)], a bradykinin B2 antagonist, and capsazepine (100 nmol/50 µl, i.t.), a TRPV1 antagonist, attenuated simvastatin-induced plasma extravasation. Simvastatin (5, 10 and 20 mg/kg) did not cause bronchoconstriction per se, but exacerbated the bronchoconstrictive response to bradykinin (30 nmol/kg, i.v.), a B2 agonist (0.7 + 0.1 ml/H2O), or capsaicin (30 nmol/kg, i.v.), a TRPV1 agonist (0.8 + 0.1 ml/H2O), compared to the vehicle (0.1 + 0.04 ml/H2O and 0.04 + 0.01 ml/H2O, respectively). The bronchoconstriction elicited by bradykinin (100 nmol/kg, i.v.) in simvastatin non-treated rats was inhibited by L-NAME. The exacerbation of bronchoconstriction induced by bradykinin or capsaicin in simvastatin-treated rats was inhibited by L-NAME, HOE 140 or capsazepine. These results suggest that treatment with simvastatin promotes the release of bradykinin, which, via B2 receptors, releases NO that can then activate the TRPV1 to promote plasma extravasation and bronchoconstriction.


Assuntos
Brônquios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptor B2 da Bradicinina/metabolismo , Sinvastatina/efeitos adversos , Canais de Cátion TRPV/metabolismo , Traqueia/efeitos dos fármacos , Administração Intravenosa , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Brônquios/metabolismo , Broncoconstrição/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Injeções Intraperitoneais , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Sinvastatina/administração & dosagem , Canais de Cátion TRPV/antagonistas & inibidores , Traqueia/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L912-L924, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549600

RESUMO

Asthma affects millions of people worldwide and its prevalence is increasing. It is characterized by chronic airway inflammation, airway remodeling, and pathologic bronchoconstriction, and it poses a continuous treatment challenge with very few new therapeutics available. Thus, many asthmatics turn to plant-based complementary products, including ginger, for better symptom control, indicating an unmet need for novel therapies. Previously, we demonstrated that 6-shogaol (6S), the primary bioactive component of ginger, relaxes human airway smooth muscle (hASM) likely by inhibition of phosphodiesterases (PDEs) in the ß-adrenergic (cyclic nucleotide PDEs), and muscarinic (phospholipase C, PLC) receptor pathways. However, oral 6S is extensively metabolized and it is unknown if the resulting metabolites remain bioactive. Here, we screened all the known human metabolites of 6S and several metabolite-based synthetic derivatives to better understand their mechanism of action and structure-function relationships. We demonstrate that several metabolites and metabolite-based synthetic derivatives are able to prevent Gq-coupled stimulation of intracellular calcium [Ca2+]i and inositol trisphosphate (IP3) synthesis by inhibiting PLC, similar to the parent compound 6S. We also show that these compounds prevent recontraction of ASM after ß-agonist relaxation likely by inhibiting PDEs. Furthermore, they potentiate isoproterenol-induced relaxation. Importantly, moving beyond cell-based assays, metabolites also retain the functional ability to relax Gq-coupled-contractions in upper (human) and lower (murine) airways. The current study indicates that, although oral ginger may be metabolized rapidly, it retains physiological activity through its metabolites. Moreover, we are able to use naturally occurring metabolites as inspiration to develop novel therapeutics for brochoconstrictive diseases.


Assuntos
Cálcio/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Asma/induzido quimicamente , Asma/metabolismo , Broncoconstrição/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Isoproterenol/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Am J Respir Cell Mol Biol ; 65(6): 658-671, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293268

RESUMO

Exaggerated airway smooth muscle (ASM) contraction regulated by the Gq family of G protein-coupled receptors causes airway hyperresponsiveness in asthma. Activation of Gq-coupled G protein-coupled receptors leads to phospholipase C (PLC)-mediated generation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG signaling is terminated by the action of DAG kinase (DGK) that converts DAG into phosphatidic acid (PA). Our previous study demonstrated that DGKζ and α isoform knockout mice are protected from the development of allergen-induced airway hyperresponsiveness. Here we aimed to determine the mechanism by which DGK regulates ASM contraction. Activity of DGK isoforms was inhibited in human ASM cells by siRNA-mediated knockdown of DGKα and ζ, whereas pharmacological inhibition was achieved by pan DGK inhibitor I (R59022). Effects of DGK inhibition on contractile agonist-induced activation of PLC and myosin light chain (MLC) kinase, elevation of IP3, and calcium levels were assessed. Furthermore, we used precision-cut human lung slices and assessed the role of DGK in agonist-induced bronchoconstriction. DGK inhibitor I attenuated histamine- and methacholine-induced bronchoconstriction. DGKα and ζ knockdown or pretreatment with DGK inhibitor I resulted in attenuated agonist-induced phosphorylation of MLC and MLC phosphatase in ASM cells. Furthermore, DGK inhibition decreased Gq agonist-induced calcium elevation and generation of IP3 and increased histamine-induced production of PA. Finally, DGK inhibition or treatment with DAG analog resulted in attenuation of activation of PLC in human ASM cells. Our findings suggest that DGK inhibition perturbed the DAG:PA ratio, resulting in inhibition of Gq-PLC activation in a negative feedback manner, resulting in protection against ASM contraction.


Assuntos
Broncoconstrição/efeitos dos fármacos , Diacilglicerol Quinase/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Liso/enzimologia , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Broncoconstrição/genética , Células Cultivadas , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Humanos , Contração Muscular/genética , Transdução de Sinais/genética
8.
Cells ; 10(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069899

RESUMO

Expression of bronchodilatory ß2-adrenoceptors and bronchoconstrictive muscarinic M3-receptors alter with airway size. In COPD, (a combination of) ß2-agonists and muscarinic M3-antagonists (anticholinergics) are used as bronchodilators. We studied whether differential receptor expression in large and small airways affects the response to ß2-agonists and anticholinergics in COPD. Bronchoprotection by indacaterol (ß2-agonist) and glycopyrrolate (anticholinergic) against methacholine- and EFS-induced constrictions of large and small airways was measured in guinea pig and human lung slices using video-assisted microscopy. In guinea pig lung slices, glycopyrrolate (1, 3 and 10 nM) concentration-dependently protected against methacholine- and EFS-induced constrictions, with no differences between large and small intrapulmonary airways. Indacaterol (0.01, 0.1, 1 and 10 µM) also provided concentration-dependent protection, which was greater in large airways against methacholine and in small airways against EFS. Indacaterol (10 µM) and glycopyrrolate (10 nM) normalized small airway hyperresponsiveness in COPD lung slices. Synergy of low indacaterol (10 nM) and glycopyrrolate (1 nM) concentrations was greater in LPS-challenged guinea pigs (COPD model) compared to saline-challenged controls. In conclusion, glycopyrrolate similarly protects large and small airways, whereas the protective effect of indacaterol in the small, but not the large, airways depends on the contractile stimulus used. Moreover, findings in a guinea pig model indicate that the synergistic bronchoprotective effect of indacaterol and glycopyrrolate is enhanced in COPD.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Glicopirrolato/farmacologia , Indanos/farmacologia , Pulmão/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quinolonas/farmacologia , Animais , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Cobaias , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
9.
Toxicol Lett ; 349: 51-60, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118312

RESUMO

Exposure to high concentrations of ammonia (NH3) can cause life-threatening lung damages. The objective of this study was to establish a translational in vitro model for NH3-induced lung injury. Precision-cut lung slices (PCLS) from rats were exposed to NH3 and toxicological responses and cell viability were quantified by analysis of LDH, WST-1, inflammatory mediators (IL-1ß, IL-6, CINC-1, MMP-9, RAGE and IL-18), and by microscopic evaluation of bronchoconstriction induced by electric-field-stimulation (EFS) or methacholine (MCh). Different treatment strategies were assessed to prevent or reverse the damages caused by NH3 using anti-inflammatory, anti-oxidant or neurologically active drugs. Exposure to NH3 caused a concentration-dependent increase in cytotoxicity (LDH/WST-1) and IL-1ß release in PCLS medium. None of the treatments reduced cytotoxicity. Deposition of NH3 (24-59 mM) on untreated PCLS elicited an immediate concentration-dependent bronchoconstriction. Unlike MCh, the EFS method did not constrict the airways in PCLS at 5 h after NH3-exposure (47-59 mM). Atropine and TRP-channel antagonists blocked EFS-induced bronchoconstriction but these inhibitors could not block the immediate NH3-induced bronchoconstriction. In conclusion, NH3 exposure caused cytotoxic effects and lung damages in a concentration-dependent manner and this PCLS method offers a way to identify and test new concepts of medical treatments and biomarkers that may be of prognostic value.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Amônia/toxicidade , Broncoconstrição/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Ratos Sprague-Dawley
10.
Arch Biochem Biophys ; 706: 108897, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34004182

RESUMO

Diseases such as asthma are exacerbated by inflammation, cigarette smoke and even nicotine delivery devices such as e-cigarettes. However, there is currently little information on how nicotine affects airways, particularly in humans, and changes in the context of inflammation or asthma. Here, a longstanding assumption is that airway smooth muscle (ASM) that is key to bronchoconstriction has muscarinic receptors while nicotinic receptors (nAChRs) are only on airway neurons. In this study, we tested the hypothesis that human ASM expresses α7nAChR and explored its profile in inflammation and asthma using ASM of non-asthmatics vs. mild-moderate asthmatics. mRNA and western analysis showed the α7 subunit is most expressed in ASM cells and further increased in asthmatics and smokers, or by exposure to nicotine, cigarette smoke or pro-inflammatory cytokines TNFα and IL-13. In these effects, signaling pathways relevant to asthma such as NFκB, AP-1 and CREB are involved. These novel data demonstrate the expression of α7nAChR in human ASM and suggest their potential role in asthma pathophysiology in the context of nicotine exposure.


Assuntos
Asma/genética , Broncoconstrição/efeitos dos fármacos , Misturas Complexas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/metabolismo , Asma/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Fumar Cigarros/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-13/farmacologia , Masculino , Pessoa de Meia-Idade , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Índice de Gravidade de Doença , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Front Immunol ; 12: 634509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953711

RESUMO

Tregitopes (T regulatory epitopes) are IgG-derived peptides with high affinity to major histocompatibility complex class II (MHCII), that are known to promote tolerance by activating T regulatory cell (Treg) activity. Here we characterized the effect of IgG Tregitopes in a well-established murine model of allergic asthma, demonstrating in vivo antigen-specific tolerance via adoptive transfer of Tregitope-and-allergen-activated Tregs. Asthma is a heterogeneous chronic inflammatory condition affecting the airways and impacting over 300 million individuals worldwide. Treatment is suppressive, and no current therapy addresses immune regulation in severely affected asthmatics. Although high dose intra-venous immunoglobulin (IVIg) is not commonly used in the asthma clinic setting, it has been shown to improve severe asthma in children and in adults. In our laboratory, we previously demonstrated that IVIg abrogates airway hyperresponsiveness (AHR) in a murine model of asthma and induces suppressive antigen-specific T-regulatory cells. We hypothesized that IgG-derived Tregitopes would modulate allergic airway disease by inducing highly suppressive antigen-specific Tregs capable of diminishing T effector cell responses and establishing antigen-specific tolerance. Using ovalbumin (OVA-) and ragweed-driven murine models of allergic airway disease, we characterized the immunoregulatory properties of Tregitopes and performed Treg adoptive transfer to OVA- and ragweed-allergic mice to test for allergen specificity. Treatment with Tregitopes attenuated allergen-induced airway hyperresponsiveness and lung inflammation. We demonstrated that Tregitopes induce highly suppressive allergen-specific Tregs. The tolerogenic action of IgG Tregitopes in our model is very similar to that of IVIg, so we foresee that IgG Tregitopes could potentially replace steroid-based treatment and can offer a synthetic alternative to IVIg in a range of inflammatory and allergic conditions.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Epitopos de Linfócito T/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Pulmão/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Transferência Adotiva , Animais , Animais Geneticamente Modificados , Antígenos de Plantas , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Ovalbumina , Extratos Vegetais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante
12.
Respir Physiol Neurobiol ; 291: 103692, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020067

RESUMO

BACKGROUND: A fall of ≥ 20 % in forced expiratory volume in the first second (FEV1) with a cumulative dose of histamine ≤ 7.8 µmol is considered to indicate bronchial hyperactivity, but no method exists for patients who cannot perform spirometry properly. Here we hypothesized that increases in respiratory central output measured by chest wall electromyography of the diaphragm (EMGdi-c) expressed as a function of tidal volume (EMGdi-c/VT) would have discriminative power to detect a 'positive' challenge test. METHODS: In a physiological study EMGdi was recorded from esophageal electrode (EMGdi-e) in 16 asthma patients and 16 healthy subjects during a histamine challenge test. In a second study, EMGdi from chest wall surface electrodes (EMGdi-c) was measured during a histamine challenge in 44 asthma patients and 51 healthy subjects. VT was recorded from a digital flowmeter during both studies. RESULTS: With histamine challenge test the change in EMGdi-e/VT in patients with asthma was significantly higher than that in healthy subjects (104.2 % ± 48.6 % vs 0.03 % ± 17.1 %, p < 0.001). Similarly there was a significant difference in the change of EMGdi-c/VT between patients with asthma and healthy subjects (90.5 % ± 75.5 % vs 2.4 % ± 21.7 %, p < 0.001). At the optimal cut-off point (29 % increase in EMGdi-c/VT), the area under the ROC curve (AUC) for detection of a positive test was 0.91 (p < 0.001) with sensitivity 86 % and specificity 92 %. CONCLUSIONS: We conclude that EMGdi-c/VT may be used as an alternative for the assessment of bronchial hypersensitivity and airway reversibility to differentiate patients with asthma from healthy subjects.


Assuntos
Asma/diagnóstico , Hiper-Reatividade Brônquica/diagnóstico , Broncoconstrição/fisiologia , Broncodilatadores/farmacologia , Diafragma/fisiopatologia , Histamina/farmacologia , Volume de Ventilação Pulmonar/fisiologia , Adolescente , Adulto , Idoso , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/administração & dosagem , Eletromiografia , Feminino , Histamina/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Front Immunol ; 12: 636061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717182

RESUMO

Asthma and allergies are complex, chronic inflammatory diseases in which genetic and environmental factors are crucial. Protection against asthma and allergy development in the context of farming environment is established by early animal contact, unpasteurized milk consumption and gut microbiota maturation. The human ß-defensin 2 (hBD-2) is a host defense peptide present almost exclusively in epithelial tissues, with pronounced immunomodulatory properties, which has recently been shown to ameliorate asthma and IBD in animal models. We hypothesized that adequate hBD-2 secretion plays a role in the protection against asthma and allergy development and that genetic variations in the complex gene locus coding for hBD-2 may be a risk factor for developing these diseases, if as a consequence, hBD-2 is insufficiently produced. We used MALDI-TOF MS genotyping, sequencing and a RFLP assay to study the genetic variation including mutations, polymorphisms and copy number variations in the locus harboring both genes coding for hBD-2 (DEFB4A and DEFB4B). We administered hBD-2 orally in a mouse model of house dust mite (HDM)-asthma before allergy challenge to explore its prophylactic potential, thereby mimicking a protective farm effect. Despite the high complexity of the region harboring DEFB4A and DEFB4B we identified numerous genetic variants to be associated with asthma and allergy in the GABRIELA Ulm population of 1,238 children living in rural areas, including rare mutations, polymorphisms and a lack of the DEFB4A. Furthermore, we found that prophylactic oral administration of hBD-2 significantly curbed lung resistance and pulmonary inflammation in our HDM mouse model. These data indicate that inadequate genetic capacity for hBD-2 is associated with increased asthma and allergy risk while adequate and early hBD-2 administration (in a mouse model) prevents atopic asthma. This suggests that hBD-2 could be involved in the protective farm effect and may be an excellent candidate to confer protection against asthma development.


Assuntos
Antiasmáticos/farmacologia , Asma/genética , Asma/prevenção & controle , Hipersensibilidade/genética , Hipersensibilidade/prevenção & controle , Pulmão/efeitos dos fármacos , Mutação , beta-Defensinas/genética , beta-Defensinas/farmacologia , Animais , Asma/imunologia , Asma/metabolismo , Broncoconstrição/efeitos dos fármacos , Estudos de Casos e Controles , Criança , Citocinas/metabolismo , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Dosagem de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Respir Res ; 22(1): 48, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557843

RESUMO

BACKGROUND: Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. METHODS: First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann-Whitney U test or One-way nonparametric Kruskal-Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett's post-hoc test where appropriate. RESULTS: A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. CONCLUSIONS: TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction.


Assuntos
Asma/tratamento farmacológico , Broncoconstrição/fisiologia , Broncodilatadores/administração & dosagem , Pulmão/fisiologia , Ovalbumina/toxicidade , Canal de Cátion TRPA1/antagonistas & inibidores , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cobaias , Humanos , Pulmão/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Projetos Piloto
15.
Toxicol Lett ; 336: 57-67, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075463

RESUMO

As a leading cause of occupational asthma, toluene diisocyanate (TDI)-induced asthma is an inflammatory disease of the airways with one of the most significant characteristics involving inflammation, in which the receptor of advanced glycation end products (RAGE) plays an extremely important role. However, the mechanism underlying the upregulation of RAGE is still unknown. The aim of the present study was to examine whether JNK mediates ß-catenin stabilization via activation of RAGE in asthma. Herein from the results by analyzing the blood from healthy donors and patients with asthma, it was found that the expression of RAGE and p-JNK is highly correlated and elevated concomitantly with the severity of bronchial asthma. Additionally, upon sensitizing and challenging the mice with TDI, we found that RAGE inhibitor (FPS-ZM1) and JNK inhibitor (SP600125) significantly reduced the TDI-induced asthma inflammation in vivo. Furthermore, SP600125 also considerably restored RAGE and p-JNK expression. Besides, the in vitro results from TDI-HSA treatment of 16HBE cells reveal that therapeutic inhibition of JNK reduced TDI driving RAGE expression and ß-catenin translocation, while treatment with Anisomycin, a JNK agonist, showed the opposite effect. Moreover, genetic knockdown of RAGE does not contribute to JNK phosphorylation, indicating that JNK functions upstream of RAGE. Collectively, these findings highlight a role for JNK signaling in RAGE/ß-catenin regulation and have important therapeutic implications for the treatment of TDI induced asthma.


Assuntos
Antiasmáticos/farmacologia , Asma/enzimologia , Broncoconstrição , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/enzimologia , Pneumonia/enzimologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , beta Catenina/metabolismo , Adulto , Idoso , Animais , Asma/induzido quimicamente , Asma/fisiopatologia , Asma/prevenção & controle , Broncoconstrição/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosforilação , Pneumonia/induzido quimicamente , Pneumonia/fisiopatologia , Pneumonia/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Albumina Sérica Humana , Transdução de Sinais , Tolueno 2,4-Di-Isocianato
16.
Curr Opin Allergy Clin Immunol ; 21(1): 65-70, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306487

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize the complex cellular interactions of aspirin-exacerbated respiratory disease (AERD) and how these interactions promote pathogenic mechanisms of AERD. RECENT FINDINGS: In addition to characteristic changes in eicosanoid levels, recent studies have identified increases in alarmin cytokines (IL-33, thymic stromal lymphopoietin) as well as activated innate lymphoid and plasma cell populations in samples from AERD patients. SUMMARY: Patients with AERD typically demonstrate high levels of proinflammatory eicosanoids including cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) and hyporesponsiveness to prostaglandin E2 (PGE2). CysLTs are released by mast cells, eosinophils, and adherent platelets and promote epithelial release of IL-33, which activates mast cells and group 2 innate lymphoid cells (ILC2s) in concert with CysLTs. TSLP induces PGD2 release from mast cells which activates and recruits eosinophils, basophils, Th2 cells, and ILC2s via CRTH2. In turn, ILC2s and other cell types produce Th2 cytokines IL-4, IL-5, and IL-13 that, along with CysLTs and PGD2, promote bronchoconstriction, eosinophilic tissue inflammation, and mucus production.


Assuntos
Aspirina/efeitos adversos , Asma Induzida por Aspirina/imunologia , Comunicação Celular/efeitos dos fármacos , Eosinofilia/imunologia , Asma Induzida por Aspirina/sangue , Asma Induzida por Aspirina/patologia , Basófilos/imunologia , Basófilos/metabolismo , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/imunologia , Citocinas/sangue , Citocinas/metabolismo , Eicosanoides/sangue , Eicosanoides/metabolismo , Eosinofilia/sangue , Eosinofilia/induzido quimicamente , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-33/sangue , Interleucina-33/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Células Th2/imunologia , Células Th2/metabolismo
17.
Biochem Pharmacol ; 187: 114319, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33161021

RESUMO

Adenosine 5'-triphosphate (ATP) is found in every cell of the human body where it plays a critical role in cellular energetics and metabolism. ATP is released from cells under physiologic and pathophysiologic condition; extracellular ATP is rapidly degraded to adenosine 5'-diphosphate (ADP) and adenosine by ecto-enzymes (mainly, CD39 and CD73). Before its degradation, ATP acts as an autocrine and paracrine agent exerting its effects on targeted cells by activating cell surface receptors named P2 Purinergic receptors. The latter are expressed by different cell types in the lungs, the activation of which is involved in multiple pulmonary disorders. This succinct review summarizes the role of ATP in inflammation processes associated with these disorders including bronchoconstriction, cough, mechanical ventilation-induced lung injury and idiopathic pulmonary fibrosis. All of these disorders still constitute unmet clinical needs. Therefore, the various ATP-signaling pathways in pulmonary inflammation constitute attractive targets for novel drug-candidates that would improve the management of patients with multiple pulmonary diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Líquido Extracelular/metabolismo , Pneumopatias/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/fisiologia , Líquido Extracelular/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Agonistas do Receptor Purinérgico P2/administração & dosagem , Antagonistas do Receptor Purinérgico P2/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
J Pediatr ; 228: 297-300, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798566

RESUMO

We present the case of a 3-month-old infant with severe, persistent bronchoconstriction following administration of rocuronium. This observation raises awareness of a rare but potentially life-threatening reaction to neuromuscular blocking agents.


Assuntos
Anafilaxia/induzido quimicamente , Broncoconstrição/efeitos dos fármacos , Rocurônio/efeitos adversos , Anafilaxia/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Lactente , Fármacos Neuromusculares não Despolarizantes/administração & dosagem , Fármacos Neuromusculares não Despolarizantes/efeitos adversos , Rocurônio/administração & dosagem , Índice de Gravidade de Doença
19.
Eur J Pharmacol ; 891: 173698, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129789

RESUMO

Flavonol kaempferol possesses a broad spectrum of potent pharmacological activities that seem to be effective in the modulation of allergic respiratory diseases. In our study, an experimental animal model of ovalbumin (OVA)-induced allergic airway inflammation in guinea pigs was used to determine the anti-asthmatic potential of kaempferol. The parameters of specific airway resistance (sRaw) and cough reflex response were evaluated in vivo. In vitro, an assessment of tracheal smooth muscle (TSM) contractility and analyses of inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, IFN-γ), transforming growth factor (TGF-ß1), immune cells count and ciliary beating frequency (CBF) were performed. Both single (6, 20 mg/kg b. w. p. o.) and long-term administered doses of kaempferol (20 mg/kg b. w. p. o., 21 days) suppressed sRaw provoked by histamine in conscious animals. The administration of kaempferol for 21 days attenuated histamine-induced TSM contractility in vitro and ameliorated the progression of chronic airway inflammation by decreasing the levels of IL-5, IL-13, GM-CSF, eosinophil count in bronchoalveolar lavage (BAL) fluid and TGF-ß1 protein level in lung tissue. Kaempferol also eliminated the alterations in cough reflex sensitivity invoked by OVA-sensitization, but it did not affect CBF. The results demonstrate that flavonol kaempferol can modulate allergic airway inflammation and associated asthma features (AHR, aberrant stimulation of cough reflex).


Assuntos
Antiasmáticos/farmacologia , Broncoconstrição/efeitos dos fármacos , Quempferóis/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/prevenção & controle , Hipersensibilidade Respiratória/prevenção & controle , Traqueia/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Tosse/induzido quimicamente , Tosse/metabolismo , Tosse/fisiopatologia , Tosse/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Cobaias , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Ovalbumina , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Traqueia/metabolismo , Traqueia/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo
20.
J Ethnopharmacol ; 267: 113523, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129947

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa japonica Thunb., as an herbal medicine has been used for the treatment of inflammatory diseases in China and Korea. MATERIALS AND METHODS: Ultra performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometer (UPLC-PDA-QTof MS) was used to detect the major phenylethanoid glycosides in the C. japonica extract. BALB/c mice were intraperitoneally sensitized by ovalbumin (OVA) (on days 0 and 7) and challenged by OVA aerosol (on days 11-13) to induce airway inflammatory response. The mice were also administered with C. japonica Thunb. (CJT) (20 and 40 mg/kg Per oral) on days 9-13. CJT pretreatment was conducted in lipopolysaccharide (LPS)-stimulated RAW264.7 or phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells. RESULTS: CJT administration significantly reduced the secretion of Th2 cytokines, TNF-α, IL-6, immunoglobulin E (IgE) and histamine, and the recruitment of eosinophils in an OVA-exposed mice. In histological analyses, the amelioration of inflammatory cell influx and mucus secretion were observed with CJT. The OVA-induced airway hyperresponsiveness (AHR), iNOS expression and NF-κB activation were effectively suppressed by CJT administration. In addition, CJT led to the upregulation of HO-1 expression. In an in vitro study, CJT pretreatment suppressed the LPS-induced TNF-α secretion in RAW264.7 cells and attenuated the PMA-induced IL-6, IL-8 and MCP-1 secretion in A549 cells. These effects were accompanied by downregulated NF-κB phosphorylation and by upregulated HO-1 expression. CONCLUSION: These results suggested that CJT has protective activity against OVA-induced airway inflammation via downregulation of NF-κB activation and upregulation of HO-1, suggesting that CJT has preventive potential for the development of allergic asthma.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/prevenção & controle , Hiper-Reatividade Brônquica/prevenção & controle , Callicarpa , Heme Oxigenase-1/metabolismo , Pulmão/efeitos dos fármacos , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Células A549 , Animais , Antiasmáticos/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Asma/induzido quimicamente , Asma/enzimologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/enzimologia , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Callicarpa/química , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...